Imperial College

London MSc in Analogue & Digital IC Design

spi2dac.v and Echo
Synthesizer

Peter Cheung
Department of Electrical & Electronic Engineering
Imperial College London

Course webpage: www.ee.ic.ac.uk/pcheung/teaching/MSc_Experiment/
E-mail: p.cheung@imperial.ac.uk

PYKC 2Nov 2017 MSc Lab — Mastering Digital Design Lecture 4 Slide 1

Lecture Objectives

+ Explore in details the Verilog design of the SPI interface module
Examine the ADC used in the Analogue /O card

To provide some guidelines on how to perform diagnosis when things
don't work

To provide explanations on Part 4 of the experiment

To explain how the ADC works

To explain some of the major modules used in the experiment
To explain the idea of offset binary vs 2's complement

To explain the ALLPASS module and its use

To explain how echo may be synthesized

¢ ¢

* ¢ ¢ ¢ 0 0

PYKC 2Nov 2017 MSc Lab — Mastering Digital Design Lecture 4 Slide 2

I hope you have completed Part 2 of the Experiment and is ready for Part 3.

In part 3, you are going to use the FPGA to interface with the external world through
a DAC and a ADC on the add-on card. You will also learn about FSM design and
PWM module. Finally the DAC and ADC use a serial interface known as SPI. We will
take a brief look at this interface standard without going into details of how to write
Verilog to specify the SPI module design.

This lecture is designed to complement part 3 & 4 of the experiment.

Interfacing the FPGA to the DAC and ADC

+ Overview of the DAC/ADC s o0 Lowpass

¢ DAC is DC coupled (no capacitor 3 o G Fitter
in signal path) A ' N
o ADC is AC coupled (why?) 7| 8ol po —D—L;U

¢ |Interface circuit to DAC: CCycione
¢ spi2dac.v z') oA] 33v
|Interface circuit to ADC sowe| 3| 8 [nen] 0| MCPm;'" ‘—‘ﬂ
'S SpiZadc.V o "é a2 APCSOLL 10-bit ADC
. A21j, ADC SO0 | o I
Important points to note gk —D

#DAC and ADC function are NOT done within Cyclone V FPGA

+Conversion from/to analogue signals are done with 2 8-pin chips on Add-on card

+Why do we need serial-parallel interface circuits? To fit everything within 8-pin package
#A single serial clock is used for both ADC and DAC - set at 1MHz

+This is different from the system clock of 50MHz (fixed within DE1)

+Chip-select is low only when sending serial data to DAC chip on SDI pin

¢LDA is low only when all 10-bit data sent and DAC to be loaded with new value

PYKC 2Nov 2017 MSc Lab — Mastering Digital Design Lecture 4 Slide 3

This is a simplified diagram showing how the Cyclone V FPGA is interfaced to the two
data converters. There are two ADC channels and in our experiment, we are mostly
using channel 1 via the 3.5mm jack socket. You will be supplying speech signals
from the desktop computer.

There is one DAC which drives both the small speaker and, much better, drives the
ear-phone. (Please bring the ear-phone to the lab.)

The interface between the FPGA chip and the converters is through the SPI bus. You
are given the Verilog design for these two interface modules: spi2dac.v and
spi2adc.v. In the rest of this lecture, | will be going through the design of the spi2dac
module.

spi2dac design overview

¢ The components

inside spi2dac are: wtoo) spizdac st realts]

1. Clock divider Tz | 16-bit data shift register 50!

2. Load detector to S0MHz o LM *7& sk,
detect load pulse — F J

3. FSM to control the J daccs ' S
Spl interface load | load detector — .

4. Parallel to serial i conoer A
shift register to shift Wz
OUT the command L

and data to the

DA; + Note that the Verilog code is designed to match
5. Various gates e.g. the block diagram shown here

inverters and AND . .
+ It consists of TWO state machines, a counter
gates . .
and a shift register
PYKC 2Nov 2017 MSc Lab — Mastering Digital Design Lecture 4 Slide 4

In order to use the DAC, you have to include the interface module “spi2dac” in your
design. This module has a schematic shown above. It takes two inputs (in addition
to the 50MHz clock signal): data[9:0] is the 10-bit digital data to be converted by the
DAC, and a load signal which is a high pulse to trigger the spi2dac module to send
the 10-bit data to the DAC.

The internal working of sp2dac can be divided into 4 main modules. The divide-by-
50 module is straight forward — it produces a 1MHz clock for the finite state
machine, and is gated through the AND gate to generate the serial clock signal (at
1MHz).

The load detector module handles the load command and produces control signals
to the SPI state machine and the shift register.

The shift register sends the control bits and the 10-bit data serially to the SDI output.
The spi controller FSM is the main control module designed as a state machine.

We will now consider each sub-module individually.

The 1MHz clock generator

parameter BUF=1"bl; 0:no buffer, 1:vref buffered
parameter GA_N=1"bl; 0:gain = 2x, 1:gain = 1x
parameter SHDN_N=1"b1; 0:power down, 1:dac active

wire [2:0] cmd = {1'b0,BUF,GA_N,SHDN_N}; wire to VDD or GND

The load pulse detector

50MHz m 1MHz
—

dac cs,
--- internal 1MHz symmetical clock generator --- load
reg clk_1MHz; iMhz clock derived from > load detector
reqg [4:0] ctr; internal counter d tart
ac _sta
parameter TC = 5°d24; Terminal count change or——
initial begin
c1k_1MHZ = 0; don’'t need to reset - don't care
ctr = 5°b0; ... Initialise when FPGA is conf
end
always @ (posedge sysclk)
if (ctr==0) begin
ctr <= TC;
cTk_1MHZ <= ~cTk_1MHZ; toggle the output clock for s
end
else
ctr <= ctr - 1'bl;
---- end internal 1MHz symmetical clock generator -------
PYKC 2Nov 2017 MSc Lab — Mastering Digital Design Lecture 4 Slide 5

50MHz
—_—
---- FSM to detect rising edge of load and falling e
.. sr_state set on [Jo:edge of load m
.... Sr_state reset when dac_cs goes high at the end
reg [1:0] sr_stat
parameter IDLE = 2 b00,WAIT_CSB_FALL = 2'b01, WAIT_CS load > load detector
reg dac_start; set if a DAC write is deq
initial begin m

sr_state = IDLE;

dac_start = 1'b0; set while sending data to DAC

end — dac_cs
always @ (posedge sysclk) state transition load

case (sr_state

IDLE: if (loadw=l'bl

WAIT_CSB_FALL: if

WAIT_CSB_HIGH: if

default: sr_state <= IDLE;
endcase

tate <= WAIT_CSB_FALL;
1'b0) sr_state <= WAIT_CSB_HIGH;
1'b1) sr_state <= IDLE;

WAIT_CSB_FAI
dac_start=1

always @ (%)
case (sr_state)
IDLE: dac_start = 1'b0;
WAIT_CSB_FALL: dac_start = 1
WAIT_CSB_HIGH: dac_start = 1

WAIT_CSB_HIGH
dac_start=1

bl;
b0;

This is a straight forward clock divider. The Terminal Count (TC) is set to 24.
Divide by 50 is done by toggling the output (clk_1MHz) after 25 clock cycles.
Note that | generally prefer to use a down-counter instead of an up-counter.
The counter (ctr) is initialised to 24, it then counts to zero. Output is toggled
and the counter (ctr) is reset to the initial value of 24 again.

default: dac_start = 1'b0;
endcase .
end circuit to detect start and end of conversion state machine dac_cs
PYKC 2Nov 2017 MSc Lab — Mastering Digital Design Lecture 4 Slide 6

We have TWO signals to detect: the load pulse and the dac_cs signal.

Starting in the IDLE state, when load signal is asserted, we start the DAC cycle by
entering the WAIT_CSB_FALL state. In this state, dac_start is asserted, and we wait
for DAC_CS to go low from the SPI controller circuit. In this condition, the DAC is in
the middle of accepting a new data for conversion. We go to state WAIT_CSB_HIGH
TO wait for the conversion to be completed, which is indicated by DAC_CS going
high. When that happens, we return to the IDLE state waiting for another 10-bit
data to be loaded.

The SPI Controller FSM

1

~~~~~~~ spi controller FsMm

The data shift register

with 17 states (idle, and s1-516
. for Lhe 16 cycles each sending 1-bit to dac) P gv%\cz:vvggv CS
reg [ \] state; *
initial begin
stg(e = 5'b0; dac_1d = 1'b0; dac_cs = 1'bl;
en -
- dac_start SRU
always @(posedge clk_1MHz) FSM state transition t “ —
case (state controller LDA
5'do: if (dac_start == 1'bl) waiting to start|
state <= state + 1 bl; FSM
else
state
5'd17: state go back to idle state
default: state <= state + 1°061; default go to n| 1MHZ'
endcase
always @ (*) beg\n FSM output
dac_cs = 1 dac_1d = 1°b1;
case (state)
o dac_cs = 1'bl;
5 rl begin dac_cs ; dac_ld = 1°E end
defau‘lt begin dac_cs ); dac_1d = 1'b1; end |G |
endcase
end //always . 012 3 4 5 8 7 8 9 1011 12 131415
--------- END of spi controller Fsm sek 1o T‘{‘H"l‘][']]”‘
;— config bits. - 12 data bits
so_J 0 JeurfGa)sron] oo ] o6 Jo7 oY os] o4} 03] o2 o1]oo] x‘(x
?
AT /]
PYKC 2Nov 2017 MSc Lab — Mastering Digital Design Lecture 4 Slide 7

The controlling FSM controller is actually simpler than it first appears.

We need a FSM to have 18 states. State 0 is the idle state, waiting for a new data to
be sent to the DAC. Here DAC_CS (which is low active) is ‘1’ and we wait for the
dac_start to be asserted.

The default value of dac_cs and dac_ld are specified first. By default we always go
to the next state, i.e. state value goes up by 1.

Once the state machine moves to state 1, it just go through to state 16, which
corresponds to cycle 0 to 15 in the timing diagram here. At the end of state 16, we
de-assert dac_cs (i.e. go high), assert dac_Id (low) and go back to the IDLE state.

The SDI is taken from the MSB of the shift register. The serial clock Is !dac_cs (low
active) ANDed with the inverter version of the clock (making the rising edge of the
SCK signal in the middle of the data bit).

parameter  BUF=l 0:no buffer, 1:vref buffered
parameter GA_N= 0:gain = 2x, 1:gain = 1x
parameter SHDN_J O:power down, 1l:dac active
wire [2:0] cmd = {1 b0,BUF,GA_N,SHDN_N}; wire to VDD or GND
shift register for output data
[15:0] shift_reg;
initial begin
shift_reg = 16'b0; data[9:0] shift reg[15]  ¢p
end “TvraT| 16-bit data shift register '——»
always @(posedge clk_1MHz)
a¥ ( agtalg't—l 'bl)&&(dac_cs==1'b1)) SCK
T ift_reg <= {cmd,data_in,2 bo0}; Pogrer Eﬁl—o
Shift_reg <= {shift_reg[14:0],1'b0};
// Assign outputs to drive SPI interface to DAC
assign dac_sck = !clk_1MHz&'dac_cs;
assign dac_sdi = shift_reg[15]; &\ /
., 0 7 9 112 13 1415
sek i {1 [ 1JUL LUHJJUL‘
- config bits - 12 data bits
soi Jo ru;’?a}\wow‘ﬁamn 7] 06} 05) 4] 03] 02 D1]00] xﬁ
LDAC \ /
PYKC 2Nov 2017 MSc Lab — Mastering Digital Design Lecture 4 Slide 8
Finally, the data and clock output is specified here. SDI is driven through a parallel
in, serial out shift register.
We use a number of useful tricks here:
1.cmd is a 4-bit value defining the first four bits of the SDI data values. We use
symbolic variable names to make the code easy to read.
2.Shift_reg <= {cmd, data_in, 2’b00} - parallel load the 16-bit value into the shift
register.
3.Shift_reg <= {shift_reg[14:0], 1'b0} - perform left shift




Part 3 (ex10 & 11) - Testing DAC, SPl and PWM

@ data[9:0]

50MHz [—] 5000 tick_10k

spi2dac

Lowpass
Filter

PWM_OUT

! AD20
2| 8 DAC_SDI
S | AG18 —————
10 %‘_ Ax21|___DAC_LD MCP4911
“ DAC_SCK 10-bit DAC
AF20L R,

¢ Use the 10 slider switches to set data value to converter to analogue voltage
¢ Continuously loading the switch value to DAC at 10KHz rate
¢ You need: clktick_16, pwm and spi2dac

PYKC 2Nov 2017 MSc Lab — Mastering Digital Design Lecture 4 Slide 9

How to minimize problems?

1. Top level module name and file name (i.e. *.v) must match. This rule only
applies to top-level module connected to physical pins.

2. Always check each .v file for syntax error with Processing > Analyze
Current File

3. Make sure that you have included ONLY the files in your design with
Project > Add/Remove files in Project

4. Make sure that you have specify the correct top-level entity by first open
the top-level module file, and click Project > Set as Top-level Entity

5. Always check for correctness of your design with Processing > Start >
Start Analysis and Synthesize, and fix any errors

6. Check that you have assigned top-level ports to physical pins (done by
editing the <project_name>.qgsf file).

7. Check that you have specified your device to be 5CSEMA5F31C6

8. Always check compilation report on resource usage — good indication on
major errors

PYKC 2Nov 2017 MSc Lab — Mastering Digital Design Lecture 4 Slide 10

In the Lab experiment, you will test the spi2dac.v module both with the simulator
and on the hardware (with a scope) by inspecting the output signals on the test pins
(located at the top of the I/0 board).

Ex 10 and 11 are simple, but will give you confidence that the interface module
works.

This slide is self explanatory. These are some steps you should take in order
to minimize problems that you may encounter.

10




Common mistakes

-

© ® N O ;s w N

-
o

Not using h: drive to store design (e.g. Desktop, Library etc.)

Bad organisation of design folder — missing versions, files, folder etc.
Wrong case for signal names (all names are case sensitive)

Wrong number or wrong order of arguments when instantiating a module
Different number of bits used in signals at top-level and lower modules
Missing pin assignments or use the wrong pin names

Volume control on add-on board set to zero (blue potentiometers)
Confusing instance names with module names in ModelSim

Wrong use of always @ (posedge clock) — only one edge can be
specified

. You may use multiple always @ (posedge/negedge clk) block in the

SAME module, but must not do assignment to the same signal more than
once

Output port at instantiation (say at top-level module) MUST be wire, and
NOT reg

ADC - used in add-on card

+ Microchip MCP3002 10-bit ADC
Uses successive approximation architecture
+ Serial Peripheral Interface (SPI) [

*

Analog inputs programmable as single-ended or CH1 o]
pseudo-differential pairs |
On-chip sample and hold

SPI serial interface (modes 0,0 and 1,1)

Voo Vss
Datasheet L J
r— = p15 - - — A

|
. . | Sample
- Single supply operation: 2.7V - 5.5V and
« 200 ksps max sampling rate at Vpg = 5V [ Hold
- 75 ksps max sampling rate at Vpp = 2.7V | ;
P ping oo Control Logic s",'“
| Register
Symbol Description Lo o _* o _l_ _
CSISHDN Chip Select/Shutdown Input TS/SHDN Dy CLK Dout
CHO Channel 0 Analog Input
CH1 Channel 1 Analog Input @/SHDNE 1 W/ ) :| VDD/VREF
Vss Ground =
D Serial Data In CcHo 2 2 7 O CLK
Dour Sen:al Data Out CH1O 3 § 6 [ Dgyr
CLK Serial Clock VSSI: 4 o 5 :| D
Vop/VRer +2.7V to 5.5V Power Supply and Reference Voltage Input IN

PYKC 2 Nov 2017

MSc Lab — Mastering Digital Design

Lecture 4 Slide 11

PYKC 2Nov 2017

MSc Lab — Mastering Digital Design

Lecture 4 Slide 12

Here is a list of common mistakes students had in the lab.

1

This shows the ADC block diagram. Again the digital interface obeys the SPI
protocol, with Chip Select (CS), Serial Clock (CLK), Serial Data in (Din) and
Serial Data Out (Dout) signals.

This ADC uses a 10-bit DAC internally, and the successive approximate
algorithm (SAR) as described in our earlier lecture on ADCs.

12




Serial Peripheral Interface for ADC (SPI)

Start SGL/DIFF Channel MSBF-
conversion | | 0 - single ended 0 — channel 0 0 — LSB first
1 — differential i/p 1 - channel 1 1 (‘ MSB f'1’)5'
4 we use
T (use 0) / teve / | teve

[ /A
A

\

i Y

CLK 01?

i

Dour[9:0] = 1024*V;,/Npp

o
|

Experiment 16 — All Pass circuit

fou (max) = 1.2MHz (2.7V)
3.2MHz (5V)

+ ADC produces a data_valid pulse at end of conversion

) ) 1 ling f 110l
- 'w'q ‘ ﬁW\ _____ . % q'!é"---. OKHz sampling frequency , .., ﬁn“hﬁ

tsampLg I
tcony I p17-18
PYKC 2Nov 2017 MSc Lab — Mastering Digital Design Lecture 4 Slide 13

The control of the ADC is slightly more complicated than that for the DAC.
Nevertheless, the idea is similar. The transfer cycle is again 16 states, going
from state O to state 15.

Conversion is started with Chip Select going low, and Din bit 15 = ‘1". The
next bit to Din specifies whether the analogue signal is single ended or
differential. (We use single-ended for our experiment.)

The next bit selects channel 0 or 1, followed by specifying data to be returned
least-significant bit first or most-significant bit first. We use MSB first.

After these four “setup” bits are sent to the ADC, it returns 11 bits to Dout.
First bit is always 0. Then the next 10 bits are the converted data MSB first.

13

(c Jone' filter
FPGA = SoC o pwm
data_out[9:0] SPI
Id_pulse )aiZd interface J .
ac MCP4911 _.|>_, -
S0MH: 10-bit DAC R
—_—
processor
data_in[9:0]
SPI
[ data_vatia ) intorface | McP3002
—| = spi2 10-bit ADC | CH1
S50MHz star ade
S0MHz
S50MHz 10KHz —
clktick I
Hex_to . Li
_7seg bl
-
PYKC 2Nov 2017 MSc Lab — Mastering Digital Design Lecture 4 Slide 14

This is the block diagram of the basic framework used for Part 4 of VERI. The

two main modules spi2dac.v and spi2adc.v provide interfacing to the DAC and
ADC respectively. The control circuit is simple — a clock tick circuit generating
a 10 KHz sampling clock The 7 segment displays can be used to monitor the

ADC converted data.

14




Experiment 16 — top.v

Experiment 16 — allpass.v (offset correction)

module top (CLOCK 50, SW, HEXO_D, HEX1 D, HEX2 D,

DAC_SDI, SCK, DAC_CS, DAC_LD,
ADC_SDI, ADC_CS, ADC_SDO):

50MHz 10KHz
] clktick hex_to,

(c"c . lowpass
..M.Jone pwm filter clktick_16 GEN_18K (CLOCK_5@, 1'bl, 16'd4999, tick_10k);

! spi2dac SPI_DAC (CLOCK_50, data_out, tick_10k,
_"MM# SPl DAC_SDI, DAC_CS, DAC_SCK, DAC_LD);
I spi2 . interface pwm PWM_DC(CLOCK_50, data_out, ticlgtiol DLt airr),
[—p >
a

d_pulse .
dac internal_name
- spi2adc sPIM
Lsysclk GULOCK S@), R ta

S0MHz
—
.channel (1'b1),
processor .start (tick_10k),
.data_fror!\_adc (data_in),
.data_valid (data_valid),
data_in[9:0] .sdata_to_adc (ADC_SDI) T
! sPI .adc_cs (ADC_CS), nstance name
data_valid | adc_sck (ADC

interface

—>| spi2 :sdata fo (
tart — L
50MHz sta ade
SOMHz processor K_50, data_in, data_out);

9 © (HEX@, data_in[3:0]);
0 hex_to_7seg SEG1 (HEX1, data_in[7:4]);
Hex_to Y hex_to_7seg SEG2 (HEX2, {2'b@,data_in([9:8]});
_7seg =p L)
PYKC 2Nov 2017 MSc Lab — Mastering Digital Design Lecture 4 Slide 15

’ module processor (sysclk, data_in, data_out):
S
0 ‘ﬂLL@ITﬂTth‘---— sysclk: s
(1 V- :0] data_in; 1
w ” :0] data_out; 1
Processor — “allpass ANl N l \
I — 512 oAy ’T"( TRl  wire =sysclk;
processing |  offset correction LA i wi data in;
! : _in;
data_out;
‘ data_out[9:0] o
1 — X,V
H AT _OFFSET 0" ;
: ~ DAC_OFESEL 'h200;
' wsas 0D
H 385 o4 ‘,vvu T ” e assign x = data_in[9:0))/~ ADC_OFFSET:
' [
'
' data_in[9:0]
—
data_valid Now ¢ % v oufput with system clock
always @ (pdsedge g$ysclk)
data_out <= Y + DAC_OFFSET;
2's complement offset binary
lendmedule
PYKC 2Nov 2017 MSc Lab — Mastering Digital Design Lecture 4 Slide 16

Here is the top level specification connecting all the modules to the FPGA.
Here the spi2adc instantiation is done in a verbose, but secure way. Many
mistakes happen because the order of signals in the top level is different
from that in the module level. Therefore we can associate internal name
EXPLICITLY to external name with the syntax: .<internal_name> (external
name> as shown above. For example, inside spi2adc, the signal sysclk is
connected to the top level CLOCK_50 signal. Now, the order of the signals as
used here is irrelevant.

This shows a “processor” module, which in this experiment does an ALL PASS
function. That is, it takes a sample from the ADC and immediately send this
sample back out to DAC. Therefore everything is simply passed from input to
output.

15

The ALL PASS module is slightly more complex than it may appear.
Data_in[9:0] is used to represent the analogue signal input (which is bipolar)
as offset binary. There is an offset of around 385 if the input is connect to
zero (no signal). The output data_out[9:0] also has an offset. To get Vout =
0V, you need to send the binary number 512.

If you are to process the signal using normal arithmetic operators such as +, -
and *, you need to use 2’s complement number system. Therefor the ADC
data is first offset correct by subtracting the offset 385 from the converted
data to yield x[9:0]. The actual processing step is simply the store this data
in a register in 2’s complement form. Then the output y[9:0] is again
converted back to offset binary for the DAC to output. This is done by adding
512 to y[9:0].

If allpass.v andex16_top.v are both correctly specified, you can send in the

ADC a record speech signal via the 2.5mm cable, and hear the same speech
using your earphone.

16




Experiment 17 — single echo synthesizer

Sound ylt) = x(t] + B x(t-T)
source x(t') (
' >
> \_\
k— data[9.0) qle. 0=
Echo path Echosignal L er [ |
ﬁx“.T) — ’Qf: “ /
¥— clock
Sound + Output with echo
source x(t) y(t)
Delay by K samples
7%
¢ Single echo of source signal
¢ Signal flow-graph is simple: a K samples delay block, a gain block and an adder
¢ Use First-in-First-out memory to store sample: need a status signal “full” to indicate FIFO full
¢ Sampling frequency = 10KHz, theref a 8192 word FIFO provides 0.8192 second delay

PYKC 2Nov 2017 MSc Lab — Mastering Digital Design Lecture 4 Slide 17

Experiment 17 — single echo synthesizer

Processor — simple echo

Echo synthesizer (feedforward) offset correction

NG
b

data_out([9:0]

—

full

x[9:0] + data_in[9:0]
dreq data[9:0] g @,
8192x10
100] FIFO -
— ) wrreq 385 data_valid

The final compulsory exercise is to create an echo synthesizer. The basic idea
is simple: an echo is recreated when the listener receive the source signal via
a direct path AND a delayed echo path as shown.

In order for this to work, we need a delay component in the FPGA system.
The easiest way to achieve this is to use a first-in-first-out (FIFO). | will explain
exactly what a FIFO is in a later lecture. For now it is sufficient for you to
know that a FIFO block has data[9:0] as input, and gq[9:0] as output. The
first sample that goes in is the sample the first sample that comes out. There
is a write request signal wrreq which is asserted when you want to write a
word into the FIFO. Similar a rdreq signal is asserted when you want to read
a word out from the FIFO. There is a synchronising clock signal.

Finally if the FIFO is full (in this case storing 8192 samples already), then the
full signal goes high.

This FIFO will provide 0.8192 second delay if the sampling clock is 10KHz.

17

i
'

'

' -

'

'

I

H Sound + Output with echo
! source x{t} vit)
'

' Delay by K samples

: 7% x|

H 512

'

'

!

'

'

'

'

'

s

T

'

1

50MHz

2's complement

Computation in 2's complement for signed integers
x 0.5 = signed right-shift by 1-bit (sign-extension)
Verilog:  y[9:0] = x[9:0] + {q[9]. q[9:1]};
Additional signal to processor module: data_valid = a high pulse whenever there is a new data_in

Need to fill to First-in-First-out memory before starting to read data off it — hence D-FF to sense
full

PYKC 2Nov 2017 MSc Lab — Mastering Digital Design Lecture 4 Slide 18

* 000

Here is the block diagram of the processor module for a single echo
synthesier. The FIFO control circuit is quite simple, the D-FF and the AND
gate ensure that during initial operation, the FIFO is only written to until it is
completely filled. Initially, DFF is ‘0’ because full is ‘0’. The AND gate block
sthe data_valid pulse from the ADC. Therefore for the first 9192 conversions,
the FIFO is only written to, and nothing is taken off it. When the FIFO is full,
Q of DFF goes high, and from now on, every data written into the FIFO,
another data value 8192 samples earlier (ie. Z*-8192) is taken off the FIFO as
the echo signal. This is then scaled by a constant 0.5 (which is an arithmetic
right shift with sign extension).

18




Experiment 18 — multiple echoes synthesizer

Sound m Output with echo

source x{t) \ vit)
Delay by K samples
;

Processor — multiple echoes

offset correction

+_ /\ data_out[9:0]

:

:

i y19:0) z
' +
1

Echo synthesizer (feedback)

512
x[9:0] /\ + data_in[9:0)
> /

offset

ary

data[9:0]

-
385 data_valid

H

2

a 1
—

—-;
50MHz

¢ Instead of feedforward only, this uses a feedback loop
¢ To avoid instability, you must SUBTRACT delayed echo signal instead of add
¢ FIFO now stores y[9:0] output, and NOT input

PYKC 2Nov 2017 MSc Lab — Mastering Digital Design Lecture 4 Slide 19

Experiment 19 — variable delay echoes

Processor — variable delay echoes

Echo synthesizer (feedback)

offset correction

data_out[9:0)

data_valid

T
1
:
i
'
B : >
S0MHz "
]
q(8:0] ¢ 1[91] '
81929 :
rdaddr[12 0] 2-port RAM wdaddr(12:0] ] su
—_ '
rden wren fe— 908 N\ + | datainiso]

t z
- ]
i

4"’.[ z\ 1 -

pulse_gen T 385
|
]
'

¥
— 13-bit
SOMHz CIR SWI[8:0] Delay[19:10]| 3
HEX 10 Lty /)
B
" T

E {5W(8:01,0,0,0,0}

Entirely optional — do this only if you have time and is truly interested (but at least test my solution)
Use 2-port RAM instead of FIFO for delay block

RAM - only 9-bit wide (10-bit not a option), so store most-significant 9 bits y[9:1]

Write_address = Read_address + delay value from SW[8:0] (SW[9] already used)

¢ Compute delay in millisecond and display as decimal value

* 4 ¢ 0

PYKC 2Nov 2017 MSc Lab — Mastering Digital Design Lecture 4 Slide 20

A slight modification create a mult-echo synthesizer. Here we put the delay
element in a feedback path. Note that you MUST perform a subtract instead
of an add, otherwise the system has positive feedback and will become
unstable.

19

This exercise is optional. Instead of generating the FIFO block using the
Megawizard tool in Quartus, you can produce a 2-port RAM and implement
your own FIFO. Here we use a 13-bit counter and an adder to produce the
read and write addresses. Instead of using the fixed 8192 sample delay, by
offseting the counter value with a value from SW[8:0], you can adjust the
delay of the echo. There are extra modules here to show the amount of
delay as a BCD number on the display.

20




Experiment 20 — voice corruptor (grand challenge)

Delay (ms)
Delay bV]K’;XJHNB 383
Sound ;l\ ouputwah 255 Don't Don't
sourcex(i) j/' * pitch changed 12.7 care care
Delay by KB samples yit)
7 0 L
Delay (ms)
& This part is purely for those who are 383
enthusiastic about FPGA and digital KB 255 Don't Don't \
circuits 127 e e
¢ Change pitch and ensure voice remains 0
intelligible 1
+ Two delay channels with time-varying GA /—\
delays KA and KB as shown 0
¢ Merge the two signal by CROSS-FADING '
¢ Built upon previous experiments — two GB \ /_\ /
separate delay blocks required 0
10

¢ 38.3msec max delay chosen (could use u 2 B N
— T, «—>
other values) A AB = T ga
PYKC 2Nov 2017 MSc Lab — Mastering Digital Design Lecture 4 Slide 21

Finally, with minor modifications to the processing module, using TWO delay
components and a variable gain (with time), it is possible to produce a pitch

changer. There will not be enough time during the experiment for you to do
this part. However, it may be a suitable Christmas project.




